Solving Poisson equations by boundary knot method

نویسندگان

  • W. Chen
  • W Chen
چکیده

The boundary knot method (BKM) is a recent meshfree boundary-type radial basis function (RBF) collocation technique. Compared with the method of fundamental solution, the BKM uses the nonsingular general solution instead of the singular fundamental solution to evaluate the homogeneous solution, while as such the dual reciprocity method (DRM) is still employed to approximate the particular solution. However, it is noted that the nonsingular general solution of Laplace equation is a constant, the BKM can not thus directly applied to it. This paper is an extension of reference [1], where a simple BKM scheme was presented for solving Laplace equations. The scheme opens the door to use the BKM for general linear and nonlinear problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiconductor Device Simulation by a New Method of Solving Poisson, Laplace and Schrodinger Equations (RESEARCH NOTE)

In this paper, we have extended and completed our previous work, that was introducing a new method for finite differentiation. We show the applicability of the method for solving a wide variety of equations such as Poisson, Lap lace and Schrodinger. These equations are fundamental to the most semiconductor device simulators. In a section, we solve the Shordinger equation by this method in sever...

متن کامل

Boundary knot method for Poisson equations

The boundary knot method is a recent truly meshfree boundary-type radial basis function (RBF) collocation scheme, where the nonsingular general solution is used instead of the singular fundamental solution to evaluate the homogeneous solution, while the dual reciprocity method is employed to the approximation of particular solution. Despite the fact that there are not nonsingular RBF general so...

متن کامل

A Boundary Meshless Method for Neumann Problem

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...

متن کامل

Electrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory

Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...

متن کامل

A STRONG COMPUTATIONAL METHOD FOR SOLVING OF SYSTEM OF INFINITE BOUNDARY INTEGRO-DIFFERENTIAL EQUATIONS

The introduced method in this study consists of reducing a system of infinite boundary integro-differential equations (IBI-DE) into a system of al- gebraic equations, by expanding the unknown functions, as a series in terms of Laguerre polynomials with unknown coefficients. Properties of these polynomials and operational matrix of integration are rst presented. Finally, two examples illustra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003